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Their higher production performance and feed conversion efficiency make today’s
chickens more susceptible to heat stress than ever before. The increasing proportion
of poultry production in tropical and subtropical regions makes it necessary to
reconsider the long-term selection strategy of today’s commercial breeding
programmes. Also, the importance of the potential use of Naked neck and Frizzle
genes is accentuated. Nutritional strategies aimed to alleviate the negative effects of
heat stress by maintaining feed intake, electrolytic and water balance or by
supplementing micronutrients such as Vitamins and minerals to satisfy the special
needs during heat stress have been proven advantageous. To enhance the birds’
thermotolerance by early heat conditioning or feed restriction seems to be one of the
most promising management methods in enhancing the heat resistance of broiler
chickens in the short run.
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Introduction

A hot environment is one of the important stressors in poultry production. The resultant
heat stress comes from the interactions among air temperature, humidity, radiant heat and
air speed, where the air temperature plays the major role. The optimum temperature for
performance is likely to be 19 to 22ºC for laying hens and 18 to 22ºC for growing broilers
(reviewed by Charles, 2002). When the thermo requirement of chickens is not satisfied,
heat stress may occur, depending on the strain, feathering, nutrition and production
system.

In a hot environment, chickens grow and lay by exerting an effort to maintain their body
temperature within a normal range, to cope with stress responses and to ensure their
visceral organs function under a heavier heat burden. Stress response is mainly associated
with the activation of hypothalamo-pituitary-adrenal (HPA) axis and orthosympathic
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nervous system, which aggravates the detrimental effect of high body temperature. The
adverse effects of heat stress include high mortality, decreased feed consumption, and
poor body weight gain and meat quality in broiler chickens, and poor laying rate and egg
weight and shell quality in laying hens (reviewed by Howlider and Rose, 1987; Marsden
and Morris, 1987; Shane, 1988; Yahav, 2000a). Many studies have been conducted to help
understand the underlying physiological mechanism (Lin et al., 2005c). The present
review will focus on the strategies to cope with heat stress. 

Genetic strategies

SELECTION FOR HEAT TOLERANCE 
Selection for growth rate and feed efficiency (FE) is associated with a number of

undesirable consequences and the increased susceptibility to heat stress is one of them.
The magnitude of the reduction in body weight (BW) and BW gain at high temperatures
(averaging 30ºC) appears to be associated with a high growth rate and breast yield at
normal environment (averaging 25ºC) (Deeb and Cahaner, 2001a). As the two traits are
emphasized in today’s commercial broiler breeding programmes, the modern strain of
broiler chickens will suffer more severe effects of stress at high temperatures.

Although most standard breeding stocks are selected in temperate climates, the
genotypes may response differentially to high temperature even if they have similar
performance in thermoneutral environment. Yalçin et al. (1997a) reported that three
broiler chicken lines, having similar performance in the fall (average temperature 18ºC),
showed significant difference in feed intake, BW gain and FE in summer (average
temperature 28ºC). Similarly, the genotypes in commercial broilers that gain more weight
in the spring, tend to gain less weight under the hot conditions of summer (Settar et al.,
1999). Hence, the broilers’ genotype should be taken into account in broiler production in
tropical and subtropical regions, especially in view of the increasing proportion of world
broiler production in these regions. 

Because fast-growing broilers produce more heat and have a higher heat load, the effect
of heat stress is more pronounced in commercial broiler stocks and in broilers with high
growth potential compared to the slower-growing chickens (Cahaner and Leenstra, 1992;
Eberhart and Washburn, 1993; Cahaner et al., 1995; Yunis and Cahaner, 1999). During
heat exposure, the slower growing broiler lines have relatively lower mortality and body
temperature compared to fast growing lines (Yalçin, et al., 2001). The genetic potential for
rapid growth is not achieved under high temperature in fast-growing strains and they show
lower heat tolerance, which, in turn, is associated with a more pronounced decrease in feed
consumption (Deeb and Cahaner, 2002). The relative lower increase in water consumption
in fast- growing broilers under high temperatures, compared to their control counterparts,
may be another possible reason for lower feed consumption and BW gain (Deeb and
Cahaner, 2002).

Because of the negative correlation between heat tolerance and growth rate (Washburn
et al., 1980), no practical commercial genetic selection programme is available. El-Gendy
and Washburn (1995) found that the heritability for heat tolerance was very low in fast-
growing broiler chickens. Heat adaptation in broilers can be improved by applying
selection in a hot environment (Mathur and Horst, 1994). However, such selection may
lead to reduced growth potential at normal air temperatures (22ºC) and a reliable
association between growing rate and heat tolerance has to be evaluated (Deeb and
Cahaner, 2002). On the other hand, the heritability of BW gain is decreased by high
temperature, whereas the heritability of feed efficiency is not changed (Beaumont et al.,
1998). Therefore, the parameters used in selection should be season-adapted. 
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Recent research work by Gonet et al. (2000) showed that three differentially selected
lines of female breeders, with similar growth performance and similar body weight,
showed different thermal response when exposed to a hot environment (30ºC and 70%
RH) for 2 h. This difference influences the heat tolerance of their offspring. The offspring
of one breeder line breeder showed relatively lower body temperature and mild
hypocapnia and no significant alteration in pH, while the chickens from the other two lines
had a higher body temperature and largest disturbances in blood gas and acid-base
balance. This opens possibilities for associating high growth rate with better heat
tolerance.

Also, immune parameters may be correlated with changes in heat tolerance and this may
be of particular relevance in the long-living laying hens. Heterophil/lymphocyte (H/L)
ratio as an indicator of stress has been well recognised (Siegel, 1995; Puvadolpirod and
Thaxton, 2000). Al-Murrani et al. (1997) reported that H/L ratio could be used as a
selection criterion for heat tolerance in laying hens. In their study, H/L ratio was measured
at 16 wks of age after exposure to 35ºC for 6 days, The pullets with a ratio less than 0.59
were considered as resistant (R) to heat stress and those over 0.60 as sensitive (S). The R
pullets show significantly higher laying performance than that of S birds during heat
exposure in the laying period (Al-Murrani et al., 1997).

USE OF MAJOR GENES

Naked neck gene 
The naked neck (Na) gene reduces feather mass by 20% and 40% (relative to body

weight) in the heterozygous (Na/na) and homozygous (Na/Na) birds respectively,
compared with the fully feathered counterparts, having been reviewed comprehensively,
especially with regard to high temperature (Mérat, 1986). The advantageous effect of the
naked neck gene in hot environment has been recognised since 1980s (Hanzl and Somes,
1983). In broiler chickens the gene results in a relatively higher growth rate and meat yield
than their fully feathered counterparts under normal temperature and the effect is more
pronounced at high temperature (Cahaner et al., 1993). The naked neck chickens (Na/Na
or Na/na), compared to fully feathered broiler chickens (na/na), have higher body weight
and feed efficiency but lower body temperature (Patra et al., 2002). Furthermore, the Na
allele can increase breast meat production especially at high temperatures (Yunis and
Cahaner, 1999; Deeb and Cahaner, 1999). The advantageous effect of Na genotype is
more pronounced in broiler chickens with high growth rate and breast meat yield and
increases with broiler size and ambient temperature (Deeb and Cahaner, 2001a). The
lower feather mass increases the effective surface of heat dissipation and increases the
sensible heat loss from the neck (Yahav et al., 1998). Concurrently, resistance to heat
dissipation is decreased because the reduced plumage is associated with lower skin mass
due to reduced fat deposition within it (Cahaner et al., 1993; Raju et al., 2004). The high
growth rate of the Na genotype at high temperature may be related to the relative high T3

(triiodothyronine) concentration (Decuypere et al., 1993). However, as the fat deposit in
breast muscle is also decreased in Na/na chickens (Raju et al., 2004), the influence on the
flavour of meat needs to be investigated further. In summary, the naked neck gene broiler
should be considered for industrial broiler production in hot climates (Yalçin et al.,
1997b).

Frizzle gene
Frizzle (F) gene may reduce the heat insulation of feather by curling the feathers and

reducing their size. The beneficial effect of the F gene on broiler growth at high
temperature is less than that of Na allele, and the effect is only significant in slow growing
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line. However, there is an additive effect in the double heterozygous (Na/na F/f) broilers
(Yunis and Cahaner, 1999). The continuous selection for faster growth rate in broilers
together with the increasing proportion of broiler production in tropic and subtropical
regions may accentuate the importance of the potential use of Na and F genes.

Dwarf (dw) gene
The dw gene results in a reduction of 30-40% of adult body size and leads to speculation

about the inherent heat tolerance of dwarf broiler breeders. However, the inherent heat
tolerance of dw genotype in laying hens seems uncertain (reviewed by Decuypere et al.,
1991). In fast-growing broiler chickens the dw gene has been proven to have no practical
value for improving tolerance to chronic heat stress (Deeb and Cahaner, 2001b). 

Nutritional strategies

DIETARY PROTEIN LEVEL AND AMINO ACID COMPOSITION
The protein requirement is decreased because of the suppression in production

performance. It has been shown that both protein synthesis and breakdown are affected by
chronic heat stress, and protein synthesis is more affected than breakdown, leading to
reduced protein deposition. The decreased protein synthesis cannot be restored by high
dietary protein level (Temin et al., 2000). Moreover, a high protein diet even has a harmful
influence on growing performance. The growth rate and meat yield of commercial fast-
growing broiler chickens is suppressed by high dietary protein level at high temperature
(Cahaner et al., 1995). As this suppressive effect is not found in stock selected for low
abdominal fat or lean type genotype, the effect of dietary protein seems to be genotype
specific (Cahaner et al., 1995). 

Although protein has a high heat increment, decreasing dietary protein level would
enhance the harmful effect of high temperature. The lower level of dietary CP level results
in poor FE and BW gain (Alleman and Leclercq, 1997). Compared to the isoenergetic high
protein diet, chickens fed with low-protein diet tend to eat more to meet their protein
requirement, resulting in high heat production and more fat deposition (Buyse et al.,
1992). 

The suppression of growth from heat stress reduces the absolute requirement for amino
acids. The ideal amino acid balance under high temperature remains unclear, as the altered
digestion of protein and absorption of amino acids, and the enhanced protein catabolism
and gluconeogenesis in heat-stressed chickens (Reviewed by Lin et al., 2005c). The
results from a number of studies are inconsistent and even controversial. For example,
increasing lysine levels or arginine:lysine ratios is unable to improve weight gain and
breast meat yield, or attenuating the adverse effects of heat exposure in broiler chickens
(Mendes et al., 1997) and turkeys (Veldkamp et al., 2000b). The response of growth rate
to lysine supplementation is decreased by high temperature in broiler chickens (Rose and
Uddin, 1997). Turkeys subjected to high temperature do not response positively to the
supplementation of crystalline amino acids (lysine, methionine and threonine) (Veldkamp
et al., 2000a). In contrast, the favourable effect of increasing the arginine:lysine ratio on
feed conversion and growth performance at high temperature was observed in the study of
Brake et al. (1998). The increased dietary level of lysine appears necessary to
accommodate depressed feed intake and improve feed efficiency (Corzo et al., 2003). The
underlying mechanism could in part be ascribed to the changed absorption in heat-stressed
birds, as it is observed that the in vitro uptake of arginine by intestinal epithelium of heat-
stressed broilers is decreased in the presence of an equimolar concentration of lysine
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(Brake et al., 1998). On the other hand, the growth response to the supplementation of
crystalline amino acids is affected by dietary electrolytes such as sodium chloride (Brake,
1998; Chen et al., 2005) and sodium bicarbonate (Balnave and Brake, 1999).
Nevertheless, it is true that, for the diet in a poor balance of amino acids, the
supplementation of essential amino acids will be helpful to reduce the heat increment and
alleviate the harmful effect of high temperature. Furthermore, the imbalanced diet in
amino acids increases the excretion of nitrogenous substances in faeces, which results in
the accumulation of aerial ammonia, causing detrimental effects on performance and
welfare of chickens (Carlile, 1984; Kristensen and Wathes, 2000; Miles et al., 2004). The
emissions of ammonia in poultry house may be augmented by high ambient temperature
(Pratt et al., 2004). High levels of atmospheric ammonia can further affect the ability of
broiler chickens to control effectively their body temperature (Yahav, 2004). Hence, the
ideal amino acids for chickens under hot environments should be given more attention in
practice and needs further study in future. 

VITAMINS 
The decreased nutrient intake at high temperature also has repercussions on the intake

of micronutrients such as Vitamin A, E, C, etc., which play important roles in the
performance and immune function of poultry. The supplementation of these nutrients
might also be helpful for the maintenance of performance and immune function of heat-
stressed birds. Vitamin supplementation of drinking water (Vitamin A, D, E and B
complex) has been reported to be beneficial for the performance and immune function of
heat-stressed broilers (Ferket and Qureshi, 1992). 

Vitamin A
The detrimental effect of heat stress on egg production can also be alleviated by dietary

supplementation of Vitamin A (8000 IU/kg diet) (Lin et al., 2002). Vitamin A
supplementation is favourable for the immunity of heat-stressed hens. Hens suffering
heat-stress immediately after NDV vaccination need higher dietary Vitamin A intake to
obtain the maximal level of antibody production (Lin et al., 2002). Vitamin A could
alleviate the oxidative injuries induced by heat exposure and immune challenge (Wang et
al., 2002). In broiler chickens, Vitamin A (15,000IU) supplementation resulted in an
improved live weight gain, feed efficiency, and carcass traits, as well as a decrease in
serum MDA concentrations (Kucuk et al., 2003). 

Vitamin C
Ascorbic acid (AA) can be synthesized by poultry and it is not required to be

supplemented in the diet under normal conditions. When birds are challenged with
stressors, however, the supplementation of AA might be beneficial for the performance of
broilers (Pardue and Thaxton, 1982; Pardue et al., 1984; Mckee and Hurrison, 1995). The
improved performance is associated with the suppressed stress responses indicated by the
reduction in plasma corticosterone level (Mckee and Hurrison, 1995; Mahmoud et al.,
2004), adrenocorticotropic hormone (Sahin et al., 2003) and increased serum insulin, T3

and T4 (thyronine) concentrations (Sahin et al., 2002). Ascorbic acid supplementation
reduces the respiratory quotient in heat-stressed broiler chickens by emphasizing an
increase in fatty acid oxidation over the increase in protein-derived gluconeogenesis
(McKee et al., 1997). At high temperature, broiler chicken seems to have a special appetite
for AA and tends to consume more diet supplementing of AA (Kutlu and Forbes, 1993).
Ascorbic acid supplementation improves carcass quality and produces higher carcass
weight and carcass CP content, while reducing carcass crude fat content (Kutlu, 2001).
Furthermore, as AA is one of the most important antioxidants in biological system and



76 World’s Poultry Science Journal, Vol. 62, March 2006

Strategies for preventing heat stress: H. Lin et al.

heat stress could induce oxidative injuries to chickens (Lin et al., 2000), the
supplementation of AA is relevant to the maintenance of redox balance in heat-stressed
birds. 

The beneficial effect of AA supplementation on laying performance, however, seems
uncertain. Under normal conditions, dietary AA supplementation is beneficial for egg
production and shell quality of broiler breeders (Peebles and Brake, 1985) and force-
moulted layers (Zapata and Gernat, 1995), and for the fertility and hatchability of broiler
breeders (Peebles and Brake, 1985). For heat challenged laying hens, AA supplementation
improves egg weight (Lin et al., 2003) and immune response (Lin et al., 2003;
Puthpongsiriporn et al. 2001). However, the beneficial effect on laying performance was
not observed in a number of other studies (Bell and Marion, 1990; Creel et al., 2001). The
effects of supplemental AA on the zootechnical performance and immunity may relate to
the management quality, length of supplemental feeding, age of the chickens, endogenous-
exogenous balance for AA, the relationship with corticosterone and the level of stress
(Niekerk et al., 1989). Dietary level of AA may also take an effect on its supplemental
effect. High dose (1000 mg/kg) of AA supplementation may mask the beneficial effect on
laying performance of heat-stressed birds (Okan et al., 1996a), while the opposite is true
in hens at normal condition (Orban et al., 1993). 

Vitamin E
Dietary supplementation of Vitamin E is beneficial to the egg production of hens at high

temperatures. This beneficial effect of Vitamin E supplementation is associated with an
increase in feed intake and yolk and albumen solids (Kirunda et al., 2001). Vitamin E
supplementation increased the plasma concentrations of vitellogenin and very-low-
density lipoprotein (Bollengier-Lee et al., 1998), resulting from the enhanced release of
vitellogenin from liver, and also protects the hepatocyte cellular membranes from
oxidative damage (Whitehead and Mitchell, 1998). The optimum level of Vitamin E
depends on the supplemental time. High dietary supplemental level of Vitamin E (250
mg/kg diet) is beneficial to egg production at high temperature (Bollengier-Lee et al.,
1998, 1999). Lower supplemental level at 65 IU/kg diet can also enhance the egg
production and egg mass of laying hens during chronic heat stress, and meanwhile
improves the immune response (Puthpongsiriporn et al., 2001). It is suggested Vitamin E
should be added not only before heat stress but also during and after the stress (Bollengier-
Lee et al., 1999). 

ELECTROLYTIC AND WATER BALANCE 
The blood acid/base balance is disturbed by hyperventilation and results in respiratory

alkalosis, which suppresses the growth of broiler chicken and impairs eggshell quality of
laying hens. The suppression of growth in broilers can be partially alleviated by
supplementation of 1% NH4Cl or 0.5% NaHCO3 (Teeter et al., 1985), and 1.5 to 2.0% K
in the form of KCl (Smith and Teeter, 1987). The supplementation effect of electrolyte
depends on dietary electrolyte balance (DEB). Moderate dietary DEB values (from 120 to
240 mEq) have a favourable influence on the physiological response of heat-stressed
broiler chickens (Borges et al., 2004). On the other hand, the feeding status should be
considered in the adjustment of dietary electrolyte balance. At high temperature, feed-
restricted broiler chickens have adverse changes in pCO2 and pH, with a decline in pH and
increase in pCO2, compared to ad libitum-fed counterparts (Hocking et al., 1994).

Supplementation of electrolytes in drink water is also favourable to the performance of
broiler chickens, for example 0.2% NH4Cl or 0.15% KCl (Teeter and Smith, 1986), 0.6%
KCl (Ait-Boulahsen et al., 1995), 0.2% NaHCO3 (Hayat et al., 1999), and carbonated
water (Bottje and Harrison, 1985). Dietary supplementation of sodium bicarbonate for
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laying hens can improve shell quality as long as hens have access to feed during the period
of eggshell formation by using continuous light (Balnave and Muheereza, 1997). 

Another beneficial effect of including electrolytes in diet or drinking water is to
stimulate water consumption. The supplementation of electrolytes (NaHCO3, NH4Cl, etc.)
in water enhances water consumption (Branton et al., 1986; Balnave and Oliva, 1991) and
offers potential to increase tolerance to heat stress and be beneficial to performance. The
increased water consumption has no disadvantage effect on the carcass quality of broiler
chickens (Whiting et al., 1991; Smith, 1994). 

OTHER NUTRIENTS 
Heat stress could induce the unfavourable changes in indigenous bacterial microbiota.

The supplementation of probiotic Lactobacillus strains may enrich the diversity of
Lactobacillus flora in chicken jejunum and caecum, and therefore restoring the microbial
balance and maintaining the natural stability of jejunal and caecal microbiota of broiler
chicken having suffered heat stress (Lan et al., 2004).

Dietary supplementation of chromium (120 ppb) is favourable to the zootechnical
performance of heat-stressed broiler chickens, by increasing feed intake and body weight,
improving feed efficiency, and facilitating carcass characteristics (Sahin et al., 2002). Zinc
(4.5 mg/kg) supplementation resulted in an improved live weight gain, feed efficiency,
and carcass traits (Kucuk et al., 2003). Moreover, there is a combination of zinc and
Vitamin A effect in preventing heat-stress-related depression in performance of broiler
chickens (Kucuk et al., 2003). 

As the above information is mainly derived from studies focusing on one single
nutritional factor, it should be practiced with caution when to integrally applying the
measures, though a cooperative beneficial influence could be expected. For example, it is
noted that there is a significant 3-way interaction between dietary sodium chloride,
arginine:lysine ration and methionine source for the digestibility of lysine (Chen et al.,
2005). The nutritional measures should be considered as a whole for heat-stressed
chickens. 

Feeding strategies

Heat production increases with feeding level (Wiernusz and Teeter, 1993; Zhou and
Yamamoto, 1997). The level of feed or energy consumption markedly influences the
capacity of chicken to exhibit a heat-stress acclimation response (Wiernusz and Teeter,
1996) or heat tolerance (Syke and Salih, 1986).

Temporary feed restriction before heat exposure is an effective way to enhance thermal
resistance of broilers. Feed withdrawal reduces heat production, increment speed of body
temperature and mortality of broiler chickens (Francis et al., 1991; Yalçin et al., 2001).
However, this strategy may result in reduced growth rate, a longer growing period and a
delay in marketing age. The dual feeding programme is another strategy used for broilers,
which includes a protein diet during the cooler phase and an energy-rich diet during the
warmer phase of each day and maintains a nutritional balance by adequate proportion of
the two diets. During heat challenge, dual feeding reduces the body temperature and
mortality (Basilio et al., 2001). In laying hens, partial feed restriction or controlled-
feeding regime alleviates the harmful effect of heat stress on laying performance
(MacLeod and Hocking, 1993). Changing the feeding time from twice to one time daily is
also favourable to the performance of laying hens and the best time is in the afternoon
(18:00) (Samara et al., 1996). 

Wet feeding increases the dry matter (DM) intake and, therefore, alleviates partially the
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effect of heat stress on feed intake and laying performance. Feeding a wet diet containing
50% moisture increased the DM intake of layers at high temperature (Tadtiyanant et al.,
1991). Okan et al. (1996b) reported that the DM intake, egg production, egg weight were
all increased by wet feeding, which was prepared by adding tap water to the diet in the
ratio of 1:0.5-1.3. In laying hens, the increased performance by wet feeding is suggested
to be the result of elevated DM intake and the feed conversion is not affected on the basis
of DM intake (Okan et al., 1996b). In broilers, however, a diet mixed with water in a ratio
of 1.5:1 significantly increases BW gain, DM intake, carcass weight and carcass lipid
content, but deteriorated DM conversion efficiency (Kutlu, 2001). The increased water
intake is speculated as one of the underlying mechanisms of wet feeding. 

Normally the layer diet is provided in mash form. During summer, although the feed
consumption is not affected by pelleting the ration, egg production, feed efficiency and
water intake were significantly increased in laying hens (Almirall et al., 1997). The
increased water consumption and improved digestibility of the diet is probably
responsible for the advantageous effect of pelleting. Broiler chickens, however, prefer to
eat more feed with larger particle size in hot environments. Yo et al. (1997) reported that
when corn was fed as whole grains, broiler chickens consumed more protein concentrate
(43.7% CP) in self-selected diet and shown an improved feed efficiency. 

Environmental strategies

INTERMITTENT LIGHT
An intermittent light regime can improve the feed efficiency and thus the broiler

production efficiency. The favourable effect is related to the lower heat production during
both light and dark period, although fluctuations in heat production are following closely
the light-dark alternation (Aerts et al., 2000). Buyse et al. (1994) reported that broiler
chickens under 1L:3D light schedule produce less heat (W0.75kg) during early and later
age, except for the compensatory growth period around 35 d of age. 

HUMIDITY
Not only heat production but also heat loss could be affected by management. Heat loss

by evaporative heat dissipation is related the relative humidity of the surrounding
environment. The evaporative heat loss increases along with the temperature and
decreases with increasing humidity. The effect of humidity on thermal regulation response
of broiler chickens depends on age and air temperature (Lin et al., 2005a, b). Humidity is
particularly important for the performance of broiler chickens when exposed to 28ºC and
above, and of turkey when exposed to temperatures above 30ºC (Yahav et al., 1995;
Yahav, 2000b). Humidity affected the thermoregulation of 1-wk old broiler chickens by
redistributing heat within the body at high temperatures, resulting in decreased rectal
temperature and increased peripheral temperature (Lin et al., 2005a). However, high
humidity above 60% impaired the heat transmission from body core to peripheral at 35ºC
but facilitate it at 30ºC in broiler chickens of 4-wk-age (Lin et al., 2005b). Therefore,
although it is difficult to control the humidity in the poultry house, more attention should
be paid to the varying requirement of chicken to humidity, especially in the hot and humid
regions. 

EARLY HEAT CONDITIONING 
Early heat conditioning (EHC) seems to be one of the most promising methods in

enhancing the heat resistance of broiler chickens. Early heat conditioning refers to the
practice exposing broiler chicks to high temperature (36ºC) for 24 h at 3 to 5 d of age.
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Early heat conditioning induces the heat tolerance of broiler chickens at later growth stage
prior to marketing (Arjona et al., 1988, 1990; Yahav and Hurwitz, 1996; Zhou et al.,
1997). The EHC chickens have lower body temperature at normal or high temperature
(Basilio et al., 2001; 2003), suggesting the changed metabolic status. The suppressed
expression of uncoupled protein (avUCP) in skeletal muscles may play an important role
in the acquisition of heat tolerance of EHC chickens (Taouis et al., 2002). The acquisition
of the long-term heat tolerance seems not to be associated with the induction of heat shock
proteins (HSPs) (Yahav et al., 1997). 

After the growth retardation caused by the 24-h heat exposure, it is followed
immediately by compensatory growth, which results in a higher BW at marketing age
compared to the non-conditioned chickens (Yahav and Plavnik, 1999; Yahav and
McMurtry, 2001). The favourable effect of EHC is associated with higher feed intake and
unchanged feed efficiency. It is suggested that the mechanism is associated with the
induction of insulin-like growth factor-I (IGF-I) and its immediate stimulation of satellite
cell myogenic processes (Halevy at al., 2001), as well as the enhanced enterocyte
proliferation, expression and activity of brush-border membrane enzymes (Uni et al.,
2001). 

It has also been suggested that a temperature between 36 and 37.5ºC, applied at 3 d of
age is optimum for thermal conditioning of broiler chickens (Yahav and McMurtry, 2001). 

EARLY FEED RESTRICTION (EFR)
Feed restriction at an early age has been demonstrated to have a beneficial effect on

alleviating the subsequent response to heat stress (Zulkifli et al., 1994a,b, 2000). Chicks
subjected to 60% feed restriction at 4, 5 and 6 d of age have improved growth and
survivability in response to the subsequent heat treatment at marketing age (from 35 to 41
d of age). The negative effects of the heat stress on the immune system of broiler chickens
can also be alleviated by feed restriction early in life (Khajavi et al., 2003). The enhanced
expression of HSP70 is suggested to be partially responsible for the advantageous effect
(Zulkifli et al., 2002). Early feed restriction could work in concert with EHC treatment.
Improved heat tolerance and disease resistance are observed in chickens suffering EFR
together with EHC (60% feed restriction on D 4, 5 and 6; exposure to 36C for 1 h from D
1 to 21) (Liew et al., 2003). 

Besides the early condition, the age of the breeder flock from which the broiler chicks
are originating should be taken into account. It was indeed showed by Weytjens et al.
(1999) that chicks from young breeder flocks, independently from incubating egg weight
or growth rate of the posthatch chicks, are more resistant to heat at an older age. 

Conclusion 

The higher production performance and feed conversion efficiency make today’s chickens
more susceptible to heat stress than ever before. The increasing proportion of poultry
production in tropic and subtropical regions makes it necessary to reconsider the selection
strategy of today’s commercial breeding programme in the long run, and the importance
of the potential use of Na and F genes is accentuated. Nutritional strategies aimed to
alleviate the disadvantage effect of heat stress by maintaining feed intake, electrolytic and
water balance or by supplementing micronutrients to satisfy the special need during heat
stress, such as Vitamins and minerals, have been proven advantageous. To enhance the
thermotolerance by early heat conditioning or feed restriction seems to be one of the most
promising management methods in enhancing the heat resistance of broiler chickens in the
short run.
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